
Prototyping laboratories

Advanced electrical and mechanical engineering design and fabrication
Innovative concepts move from initial idea to realistic technology in our prototyping laboratories.
Our state-of-the-art prototyping capabilities enable the design, fabrication and optimization of novel devices and technologies.
Our engineers quickly fabricate scale models of our technologies using 3D computer aided design. This allows early testing and evaluation of concepts, assessment of feasibility and translation readiness levels, rapid feedback and iterations to accelerate product development.
Many of the technologies we develop require the creation of micro-scale components. Microfabrication is needed for miniaturized medical implants or for components that interface directly with cells for research applications. These include sensors to measure neural activity, probes to modulate neural systems and components to support advanced cell imaging. Early integration of medical certification is included in the design and prototype development process. Our laboratories include computer-aided design and simulation, as well as workshops for fabrication, system integration and testing.
The Wyss Center's capabilities in this area include:


Micro-fabrication including laser welding for high precision prototype development, miniaturization, micro-assembly of mechanical parts, sealing of device housing and multi-material connections.

Mechanical testing such as tensile, compression and bending tests. Impact testing is also available and structural integrity examined with microscopy.

Micro-laser cutting for precise sectioning of materials. Laser ablation of one micron-thick layers of metal or glass is also available.

Thermal imaging for assessing temperature and energy dissipation characteristics under different conditions.

Rapid prototyping with 3D printing towards design and workflow optimization, to reduce the number of processing steps and system components.

Medical electronics test bench equipped for the development and implementation of data processing devices for human clinical applications.

Prototyping of real-time wireless communication systems for data transfer from an implant to an external computer using radio frequency or optical signal transmission.


Our custom-built accelerated ageing system simulates the long-term aging of devices in the human body and helps us understand what will happen when they are implanted for long periods of time.
Accelerated aging tests are particularly useful for assessing novel encapsulation technologies. One of the major challenges of developing implantable devices is protecting the delicate internal electronics from the warm, wet and salty environment of the human body. Hermetic encapsulation of the device housing is necessary to ensure devices are leak-proof and can survive in the body for years. We evaluate hermetic and near-hermetic encapsulation solutions and integrate them into implantable medical devices then test their capacity to withstand moisture and mechanical damage.
Our system subjects the prototype device to an environment in which high temperatures and humidity accelerates aging. An electronic tag built into the device wirelessly sends updates on temperature and performance. This process gives valuable information on the ageing of electronics and the encapsulation performance.

Team
Updates
-
29.11.2021
Wyss Center and Inselspital Bern announce clinical trial for long-term brain monitoring technology
Early clinical study will assess safety and feasibility of the Epios™ subscalp recording leads in epilepsy patients
Technology -
11.03.2021
Shining a light on neurodegenerative disorders
Could a ray of light stop rogue proteins in their tracks and slow the spread of neurodegenerative disease in the brain? EPFL and the Wyss Center are set to find out.
Collaboration -
28.01.2021
Wyss Center joins Wellcome Leap global network dedicated to accelerated breakthroughs in human health
Charter group of 21 world-class institutions representing a network of over 150,000 researchers across six continents sign agreement that sets new bar for fast-paced research and development.
Collaboration
