07.01.2021

Peeking inside ‘mini-brains’ could boost understanding of the human brain in health and disease

Collaboration
A seven month old 3D ‘mini-brain’ imaged with a confocal microscope to reveal the structure of individual neurons throughout. Image credit: HEPIA

9 April 2021: Listen to the RTS CQFD broadcast with Professor Adrien Roux and Dr Stephane Pages.

Revealing details of the internal structure of ‘mini-brains’ could help accelerate drug studies and may offer alternatives to some animal testing

Geneva, Switzerland, 7 January 2021 – ‘Mini-brains’ are pin-head sized collections of several different types of human brain cell. They are used as a tool, allowing scientists to learn about how the brain develops, study disease and test new medicines. Personalized ‘mini-brains’ can be grown from stem cells generated from a sample of human hair or skin and could shed light on how brain disease progresses in an individual and how this person may respond to drugs.

Research published today by a team of scientists and engineers from HEPIA and the Wyss Center for Bio and Neuroengineering, in the journal Frontiers in Bioengineering and Biotechnology, has revealed the detailed internal anatomy of ‘mini-brains’, for the first time.

“Despite advances in growing ‘mini-brains’, it has been difficult to understand in detail what is going on inside – until now,” said Professor Adrien Roux from the Tissue Engineering Laboratory, HEPIA, senior author on the paper.

“Typically, to look inside a ‘mini-brain’, we slice it thinly and view it on a slide under a microscope. This is a slow process that can damage the sample. Now, for the first time, we have produced high resolution 3D images of single neurons within intact ‘mini-brains’, revealing their remarkable complexity,” added Dr Subashika Govindan, lead author on the paper, who carried out the work at HEPIA and is now Wellcome DBT early career fellow at the Indian Institute of Technology Madras (IITM).

The team combined a novel technique for labeling individual neurons with a method to make the whole sample completely transparent.

Peeking inside 3D human ‘mini-brains’ to understand the brain

Play Video

Leveraging the Wyss Center’s microscopy capabilities, the team developed a state-of-the-art custom module, including a bespoke sample holder and sensitive imaging detectors, for capturing 3D images of entire intact ‘mini-brains’, without slicing them. They were then able to visualize and analyze the 3D morphology of specific neurons and their anatomical distribution inside the ‘mini-brains’.

Dr Laura Batti, Microscopy Facility Manager at the Wyss Center said: “Human ‘mini-brains’ have a life span of more than a year and, with our new ability to visualize them in more detail, we can envision benefits such as reducing some animal testing.” 

The new approach could also enable imaging of large numbers of ‘mini-brains’, making it suitable for high-throughput screening for drug discovery or toxicity testing. It is reproducible and cost-effective and could potentially help accelerate personalized medicine studies.

The paper ‘Mass generation, neuron labeling, and 3D imaging of minibrains’ by Subashika Govindan, Laura Batti, Samira F. Osterop, Luc Stoppini and Adrien Roux is published in Frontiers in Bioengineering and Biotechnology. DOI: 10.3389/fbioe.2020.582650 

The Wyss Center’s lightsheet microscope.

Related to

State-of-the-art advanced lightsheet imaging center
210420583_WC-Creative_06
Facility
Brain mapping: Uniting multi-scale brain data to reveal disease mechanisms
2203_WC-Lab_020
Advance
Advancing our understanding of the brain's complex circuitry
2207_WC-Lab_016
Expertise

Prototyping laboratories

Advanced electrical and mechanical engineering design and fabrication

The ‘in conversation’ series features members of the Wyss Center community discussing their work, their collaborations and imagining the future.
Insight

29.02.2024

Translating arm and hand movement intentions into action
Wyss Center

01.02.2024

A new model of cooperation and collaboration to accelerate translational research and development in the field of neurotechnology and artificial intelligence.
Collaboration

25.01.2024