Advance

Soft neural implants

Image2, LSBI

Bioelectronic interfaces that conform to the nervous system

The convergence of materials science, electronics, and microfabrication strategies to enable new biomedical applications through more precise communication with the nervous system.

Neural implants are medical devices placed inside the body to interact with the nervous system.  They can be used to diagnose or treat neurological disorders or trauma by electrically modulating or recording signals from the brain, spinal cord or peripheral nerves. Today, tens of thousands of people experience relief from conditions such as chronic pain or epilepsy thanks to such devices implanted in their nervous system.  

However, the long-term success of neural interfaces is dependent on addressing key challenges associated with matching soft living tissues and stiff electronics, and improving biointegration.  

The Laboratory for Soft Bioelectronic Interfaces (LSBI) at École Polytechnique Fédérale de Lausanne (EPFL) has introduced a new class of soft neural implants made entirely from elastic materials using wafer-scale manufacturing processes inspired by the thin-film electronics industry.  

Designed to seamlessly interface with the surface of neural tissue, the soft implants are made of stretchable conductors embedded in silicone and covered at the electrode sites with a stretchable coating to allow for efficient stimulation and recording.

Image4

Translation to the clinic

The implementation of these medical grade electrodes in a clinical setting requires their certification for human use. A dedicated medical grade manufacturing infrastructure is being implemented in the Wyss Center’s Neural Microsystems Platform, helping the Neurosoft Bioelectronics team towards fabrication of the soft electrodes with medical grade materials, good manufacturing practices and full traceability as well as introduction of a quality management system conforming to ISO standards.

The Wyss Center has partnered with the LSBI to enable translation of medical grade soft electrode arrays to the clinic and support the launch of a startup, Neurosoft Bioelectronics, for eventual commercialization of this technology.

The team is working on verification and validation of the technology including biocompatibility, sterilization, packaging and electromagnetic compatibility of the devices for brain recording and stimulation applications.

The final step following certification for human use will be a clinical trial in collaboration with local hospitals, towards further technical de-risking of the technology. 

Epfl Logo

Neurosoft Logo

To find out more about this project and about Neurosoft Bioelectronics please contact Nicolas Vachicouras.


Team

subcutaneous electrodes

We welcome new opportunities to exchange ideas and to explore collaborations

Collaborate with us

We are searching for innovative and driven people to make a difference

Join our team

Follow us