Neural implants are medical devices placed inside the body to interact with the nervous system. They can be used to diagnose or treat neurological disorders or trauma by electrically modulating or recording signals from the brain, spinal cord or peripheral nerves. Today, tens of thousands of people experience relief from conditions such as chronic pain or epilepsy thanks to such devices implanted in their nervous system.
However, the long-term success of neural interfaces is dependent on addressing key challenges associated with matching soft living tissues and stiff electronics, and improving biointegration.
The Laboratory for Soft Bioelectronic Interfaces (LSBI) at École Polytechnique Fédérale de Lausanne (EPFL) has introduced a new class of soft neural implants made entirely from elastic materials using wafer-scale manufacturing processes inspired by the thin-film electronics industry.
Designed to seamlessly interface with the surface of neural tissue, the soft implants are made of stretchable conductors embedded in silicone and covered at the electrode sites with a stretchable coating to allow for efficient stimulation and recording.
The implementation of these medical grade electrodes in a clinical setting requires their certification for human use.
The Wyss Center has partnered with the LSBI to facilitate translation of medical grade soft electrode arrays to the clinic and support the launch of a startup, Neurosoft Bioelectronics, for eventual commercialization of this technology.
The team is working on verification and validation of the technology including biocompatibility, sterilization, packaging and electromagnetic compatibility of the devices for brain recording and stimulation applications.
The final step following certification for human use will be a clinical trial in collaboration with local hospitals, towards further technical de-risking of the technology.